# Propensity score methods to ensure fair comparisons between treatment groups in observational studies

Natàlia Pallarès Fontanet

Biostatistics Support and Research Unit Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona

> Sessions Douglas Altman January 2025

## Contents

- Introduction
- 2 Methods
- Results
- 4 Discussion
- 6 Conclusions

## Motivation

- Randomised clinical trials (RCTs): gold standard for studying the efficacy of interventions or treatments.
- Observational studies: differences between groups → could confound the association between exposure and outcome.
- ullet Ensure fair comparisons  $\longrightarrow$  control for confounding.
- ullet Several studies compare different COVID-19 waves  $\longrightarrow$  no matching or adjustment procedures.

#### Statistical aim

To compare standard and propensity score methodologies in R that ensure fair comparisons between groups.

#### Methods

#### Model estimation

- Compare effect of dichotomous variable (intervention/exposure) Z in a dichotomous outcome Y
- 5-way strategy:
  - Raw logistic regression model
  - Full adjusted logistic regression model
  - Logistic regression model adjusted by the propensity score value
  - Propensity matching logistic regression model
  - Inverse probability weighting (IPW) logistic regression model

## Raw model

First approach: Raw logistic regression model

Logistic regression model with intervention as a covariate

$$\ln\left(\frac{\mathsf{P}(Y_i=1)}{1-\mathsf{P}(Y_i=1)}\right) = \alpha + \gamma Z_i$$

 $i = 1, \ldots, n$  where n is the number of subjects of analysis

## Full adjusted model

Second approach: Full adjusted logistic regression model

Logistic regression model with intervention and all baseline variables as covariates

$$\ln\left(\frac{\mathsf{P}(Y_i=1)}{1-\mathsf{P}(Y_i=1)}\right) = \alpha + \gamma Z_i + \beta_1 X_{i1} + \dots + \beta_k X_{ik}$$

#### PS models

#### Propensity score computation

- Logistic regression model
  - Outcome: Exposure
  - Adjustment variables: Baseline variables
  - Result: Probability of exposure

$$\ln\left(\frac{\mathsf{P}(Z_i=1)}{1-\mathsf{P}(Z_i=1)}\right) = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik}$$

 $Z_i$  indicator of exposure,  $X_i = X_{i1}, \dots, X_{ik}$  is the vector of baseline variables

Prediction for each patient → Propensity score

$$ps(X_i) = P(Z_i = 1|X = X_i)$$

# PS adjusted model

**Third approach**: Logistic regression model adjusted by the propensity score value

- Logistic regression model
  - Outcome: Event of interest
  - Adjustment variables: Intervention and propensity score

$$\ln\left(\frac{\mathsf{P}(Y_i=1)}{1-\mathsf{P}(Y_i=1)}\right) = \alpha + \gamma Z_i + \beta \operatorname{ps}(X_i)$$

#### PSM model

## Fourth approach: Propensity matching logistic regression model

- Match patients according to propensity score
  - Distance: propensity score
  - Nearest neighbour matching
  - Caliper 0.2 standard deviations
- Compare matching
- Logistic regression model with matched cohorts and intervention as covariate

#### R packages and functions

- MatchIt: matchit()
- cobalt: bal.tab(), love.plot()
- survey: svyglm()

#### IPW model

**Fifth approach**: Inverse probability weighting (IPW) logistic regression model

- Weight patients according to propensity score
  - $1/ps(X_i)$  for patients in exposure group
  - $1/(1 ps(X_i))$  for patients in non-exposure group
- Compare weighted cohorts
- Logistic regression model with weighted cohorts and exposure as covariate

#### R packages and functions

- Weightlt: weightit()
- cobalt: bal.tab(), love.plot()
- survey: svyglm()

## Aim

#### Clinical aim

To compare in-hospital mortality between first and successive waves of COVID-19

- Y<sub>i</sub>: in-hospital mortality (Yes/No)
- $Z_i$ : wave (1st wave vs waves 2-3-5)
- $X = (X_1, \dots, X_k)$ : baseline variables

#### MetroSud cohort

- Patients admitted to hospital with a proven SARS-CoV-2 infection
- Adult patients (aged 18 years or older)
- Full available information in a set of key variables
- Data collected during 4 waves of the pandemic  $\longrightarrow$  Recoded in wave 1 vs waves 2/3/5

#### Methods - Model definition

#### Model definition

- Outcome: In-hospital mortality
- Variable of interest: Wave (1st vs others)
- Adjustment variables
  - Demographic: age, sex, race, body mass index (BMI), long-term facility
  - Comorbidities: diabetes mellitus, chronic obstructive pulmonary disease (COPD), heart failure, hypertension, renal insufficiency, dyslipidemia, coronary heart disease, hematological neoplasm, solid neoplasm, organ transplantation, immunosuppressive treatment, chronic complex patient/patients with advanced chronic disease
  - Laboratory data: Dimer, C-reactive protein, leukocytes, hemoglobin, lymphocytes
  - Other: Pneumonia severity index (PSI), FiO2 and oxygen support

## Methods - Missing imputation

#### Missing imputation

- Missing data in important variables → Multiple imputation
  - Identify variables with missings (8 variables, 5% to 25% of missings)
  - Chained equations to impute missing values with complete variables
    - Continuous variables: Predictive mean matching
    - Binary variables: Logistic regression
  - n = 5, iterations=25  $\longrightarrow$  5 completed datasets (convergence)
  - R package: mice

#### R packages and functions

MatchThem: matchthem(), weightthem()

## Methods - Results reporting

- Rubin rules to adjust variability between imputations
- Pool five models for each strategy Five final models
- Graphical comparison of OR and 95% CI

#### R packages and functions

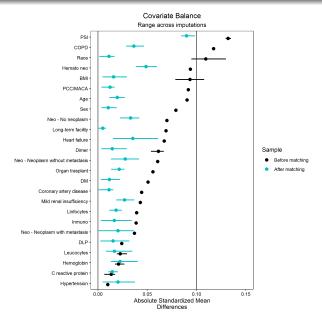
- gtsummary: tbl\_regression()
- ggplot2: ggplot()

# Included patients

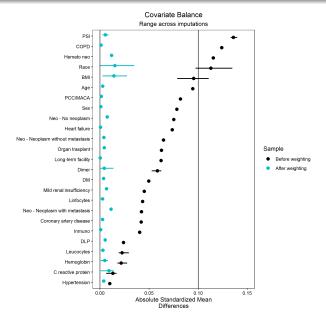
|                        | Wave 1<br>N=2074          | Wave 2-3-5<br>N=1906    |
|------------------------|---------------------------|-------------------------|
| Age (years)            | 59.00 [49.00; 69.00]      | 59.00 [46.00; 69.00]    |
| Women                  | 854 (41.18%)              | 712 (37.36%)            |
| ВМІ                    | 28.90 [25.86; 32.15]      | 29.41 [26.45; 32.99]    |
| Unknown                | 636                       | 352                     |
| COPD                   | 274 (13.21%)              | 337 (17.68%)            |
| Heart Failure          | 50 (2.41%)                | 70 (3.67%)              |
| Hematological neoplasm | 12 (0.58%)                | 35 (1.84%)              |
| Race                   |                           |                         |
| Caucasian              | 1206 (78.06%)             | 1264 (72.90%)           |
| Other                  | 339 (21.94%)              | 470 (27.10%)            |
| Unknown                | 529                       | 172                     |
| Dimer D                | 566.50 [314.00; 1,050.00] | 450.50 [255.00; 840.00] |
| Unknown                | 488                       | 176                     |
| C-reactive protein     | 79.70 [34.00; 149.00]     | 81.90 [39.40; 139.90]   |
| Unknown                | 161                       | 120                     |

Median [Q1; Q3]; n (%)

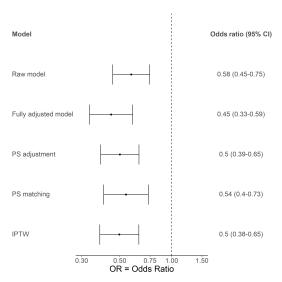
# Graphical comparison propensity matching (N=3484)



# Graphical comparison propensity weighting (N=3980)



## OR and 95%CI for the pool logistic models for each strategy



#### Discussion

- All adjustment methods corrected raw OR
- Full adjusted model
  - Allows the measurement of each covariate risk
  - Overfitting when small number of events or large number of covariates
- Propensity matching
  - Perfect covariate balance
  - Reduces sample size
- Propensity weighting
  - Retains all sample size
  - Unstable with extreme weights
- Limitations: residual confounding

#### Conclusions

- Same statistical conclusion regardless of the strategy used (in this cohort)
- PS matching and weighting result in similar distribution of baseline variables
- PS methods reduce a set of confounders into a single variable
- R has a range of functions to adjust for confounders in observational studies
- These functions are adapted for missing data scenarios

#### References

#### References

- Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41-55
- Farhad Pishgar, Noah Greifer, Clémence Leyrat and Elizabeth Stuart (2021).
  MatchThem:: Matching and Weighting after Multiple Imputation. The R Journal
- Greifer N (2024). cobalt: Covariate Balance Tables and Plots. R package version 4.5.5
- Pallarès N, Tebé C, Abelenda-Alonso G, Rombauts A, Oriol I, Simonetti AF, et al. Characteristics and Outcomes by Ceiling of Care of Subjects Hospitalized with COVID-19 During Four Waves of the Pandemic in a Metropolitan Area: A Multicenter Cohort Study. Infect Dis Ther. 2023 Jan;12(1):273–89

## Acknowledgements















Thank you for your attention!

Gràcies per la vostra atenció!